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SUPPLEMENTARY MATERIAL

S1: ISOTOPIC DIETARY STUDIES

Stable isotope data (δ13C, δ15N) for the burials were drawn from previously published sources: 

Higham et al. (2018: tab. 1) and Gaydarska et al. (2021: tab. 2). The carbon and nitrogen stable 

isotope analyses methods for both published sources were conducted by the Oxford Radiocarbon

Accelerator Unit and are described by Brock et al. (2010: 110).

The determination of probable ancient diet is based on the isotopic profiles of δ 13C and 

δ15N from skeletal samples of individuals interred in the Varna cemeteries. These isotopic 

profiles were input to the proportional diet mixing model FRUITS (Fernandes et al., 2014) to 

estimate individual diet proportions with reference to baseline isotopic data on likely regional 

food sources. The FRUITS model settings are the same as in our initial Varna study (Gaydarska 

et al., 2022). The modelling employs a simple whole fraction format, without macronutrient 

routing. As there are few animal and no plant remains that have been recovered from the Varna 

vicinity, proxies for foods that were likely to have been available at Varna were collated from 

previously published work on regional sources.  “Cereal/Pulses” are from carbon and nitrogen 

values for archaeobotanical samples of wheat, barley, lentil, and bitter vetch from sites within 

500 km of Varna (Azmak, Karanovo, Slatina, and Kapitan Dimitrievo; Bogaard et al., 2013: tab. 

2). Mean values and errors are −24.0±0.2‰ δ13C and 3.7±0.4‰ δ15N. “Terrestrial Animals” are 

herbivore and omnivore/carnivore animal bone from the Durankulak and Varna cemeteries 

(Honch et al., 2006: tab. 1). Here the mean isotopic values for animal bone were averaged, and 

then adjusted by −3.7‰ for δ13C and −0.6 for δ15N to reflect estimated flesh values (cf. Beavan-

Athfield et al., 2008). The resulting adjusted values for regional terrestrial animal sources are 

−23.2±0.1‰ for δ13C, and 6.4±0.3‰ for δ15N. The baseline for “Black Sea Fish” consists of 

flesh values of modern free-range Black Sea sprats, mackerel, and anchovies (Bănaru & 

Harmelin-Vivien, 2009). These modern fish values are adjusted by +0.86‰ to reflect the 

temporal variations in δ13C incorporated into marine organisms relative to modern waters (the 

‘Suess effect’; Suess, 1958; see also Böhm et al., 2002). The resulting Black Sea fish values are 



−18.7±0.1‰ for δ13C, and 12.7±0.1‰ for δ15N. The isotopic offset between diet and consumers 

was 4.8± 0.5‰ for δ13C (Fernandes et al., 2014, 2015), and 5.5±0.5‰ for δ15N (O’Connell et al., 

2001). The weight and concentration of each of the three diet sources were set at 100%.

S2: CLUSTERING METHODOLOGY

We delineated clusters of burials with similar stable isotope ratios using the HDBSCAN 

algorithm (Campello et al., 2013) with mpts=3. HDBSCAN (Hierarchical Density-Based Spatial 

Clustering of Applications with Noise) is a non-parametric clustering and outlier detection 

algorithm that seeks the ‘most stable’ clusters in a given dataset. In other words, it selects those 

natural clusters in the data that are least affected by the choice of a particular density or distance 

threshold. HDBSCAN is well suited to stable isotope data because it performs well with non-

linear clusters, is robust to noise, and does not rely on a pre-specified number of desired clusters 

(Campello et al., 2015). We applied the modified algorithm suggested by Malzer and Baum 

(2020), where clustering below a certain threshold distance is ignored. In our case, we selected 

this threshold to collapse together clusters that were only visible at distances under the maximum

measurement error of the isotope ratios (0.03). Clustering was conducted with the R package 

dbscan (Hahsler et al., 2019); the data and R code to reproduce this analysis is deposited with 

Zenodo at https://doi.org/10.5281/zenodo.11203467

S3: ISOTOPIC DIETARY CHARACTERISTICS OF VARNA 1 SUB-GROUPS

Two smaller clusters (A and B, Figure 1) consist of ten individuals, including one child (Grave 

158, the 5–7-year old whose aDNA was initially claimed to have a steppe ancestry: Mathieson et

al., 2018, a claim revised by a later study: Penske et al., 2023). These individuals plot above the 

core group due to having among the highest δ15N values of the Varna 1 and Varna 3 populations, 

and δ13C trending towards more enriched values. Combined, clusters A and B have a mean 

11.4±0.3‰ δ15N and mean δ13C of −19.2±0.2‰. For clusters A and B, the average proportions of

FRUITS estimated terrestrial animal meat (40.1%±22.6 %) and fish (7.5%±5.4%) combines for 

47.6% animal and fish proportion, compared to the core group’s 29.3%.

Group C has four burials which have mean δ15N similar to that of the core population 

(10.5±0.3‰) but are slightly depleted in δ13C (mean −19.3±0.2‰) as compared to the core group



mean δ13C of −18.9±0.2‰. FRUITS estimated proportions of terrestrial animal (28.3%±18.8%) 

and Black Sea fish (6.0%±4.6%) indicate a combined meat and fish diet proportion of 34.3%.

Cluster D consists of three burials from Varna 3 (Grave12, a 13-15-year old female, and 

Grave G1 and Grave G11VR3, both 20–30 years old, and male and female respectively). As a 

group they have the lowest δ15N and are in the depleted range of 13C. Group D mean δ13C and 

δ15N are −19.9±0.2‰ and 9.4±0.3‰ respectively. FRUITS estimates for cereal/pulses make up 

the greater proportion of the diet (82.6%±11.3%), with terrestrial animal (14.2%±11.5%), and 

fish (3.2%±2.7%) contributing only a combined 17.4%. Cluster D indicates people with more 

basic cereal and pulse diets, with far lower meat and fish sources than other groups.

Turning from the graves clustered by similar isotopic profiles, we examine the seventeen 

outlier points, which are individuals who exhibit singular variations in Varna diets. These points 

can be broadly divided into six individuals (Graves 51, 28, 111, 43, 32, and 25) with enriched 

δ13C (minimum/maximum −18.7‰ to −17.8‰) and δ15N (minimum/maximum 10.0‰ to 

11.7‰). Among these is the richest burial in the necropolis, Grave 43 from Varna 1, the 40–60-

year-old male with δ15N of 11.1±0.3‰, who was buried with over a thousand items, including 

gold artefacts weighing nearly 1.6 kg (Rusev et al., 2010). Driving higher nitrogen and enriched 

δ13C for these individuals are the mean FRUITS estimates of terrestrial animals (34.7%±22.2%) 

and Black Sea fish (10.0%±6.4%) for a combined 44.7% animal and fish component in these 

diets, suggesting access to higher-status foods.

The second trend, consisting of ten individuals (Graves 225, 179, 137, 129, 126, 87, 84 

from Varna 1, Graves G13, G9, and G6 from Varna 3), is marked by depleted δ 13C 

(minimum/maximum −20.0‰ to −19.3‰) and a broader range of δ15N (minimum/maximum 

8.3‰ to 10.9‰). These individuals’ range of isotopic profiles seem to show a varying story of 

access or dietary preference, with lower FRUITS estimated terrestrial animal (mean 17.5±13%) 

and minimal proportions Black Sea fish (mean 3.9±2.8%), implying diets which rely mainly on 

non-flesh diet sources. Delving further into these results, two children (Grave 84, a 7–8-year old,

and Grave 179, a 6–8-year old child) have the lowest δ15N values in the entire population of only 

8.3‰ and 8.8‰ respectively and are matched only by a δ15N of 8.4‰ for Grave 126, a 25–30-

year old of indeterminate sex. For these, both depleted 13C and lower 15N are substantiated by 

FRUITS estimations that suggest less animal flesh in their diets (from 8.4±7.3% to 11.8±9.7%). 

and negligible Black Sea fish (2.4±2.1% to 3.1±2.7%). As for Graves 225, 137, and G9, they 



have higher δ 15N of 10.1‰ to 10.9‰, and their FRUITS estimated diet proportions of terrestrial 

animals (from 21.9±15.8% to 33.4±20.7%) and, again, a negligible proportion of Black Sea fish 

(from 4.0±3.3% to 5.4±4.3%). We suggest that, for these outlier points with a range of δ 15N, 

either access or dietary preference was for diets much lower in animal flesh, and with little or no 

fish.

Grave 44 was a 13-year old male with δ13C −19.6‰ and the most enriched of all 

individuals in the Varna population, with δ15N of 11.9‰. FRUITS estimations suggests that 

terrestrial animal contribute to 54.6%±24.3% of diet, and 7.2%±5.6% Black Sea fish. Grave 44’s

closest isotopic neighbours in Figure 1 is cluster B, which groups five of the burials with the 

highest δ15N in the cemetery population (mean 11.4‰) and a mean δ13C of −19.4‰. FRUITS 

estimations for terrestrial animals for cluster B is a mean of 44.9%, while Black Sea fish for the 

cluster is comparable to Grave 44 at 7.1%. The individual in Grave 44 may be of particular 

interest, with the most enriched δ15N and the highest estimated proportion of terrestrial animal 

component in the overall population.

We also consider factors that support the assumption that marine fish (i.e. our baseline 

Black Sea fish) rather than freshwater fish are the aquatic food source in Varna diets. Freshwater 

fish diet sources have a terrestrial δ13C range of −28.2‰ to −20.2‰, compared to marine and 

brackish water fish of −14·9 to −9·4‰ (see Fuller et al., 2012; Robson et al., 2016) due to 

contributions to freshwater environs from dissolved inorganic carbon and terrestrial runoff. With 

the trophic effect factors that we have used in the FRUITS modelling—4.8± 0.5‰ for δ 13C 

(Fernandes et al., 2014, 2015), and 5.5±0.5‰ for δ15N (O’Connell et al., 2001)—freshwater fish 

would contribute to δ13C values of consumer isotopic profiles in the range of −23.4 to −15.4, as 

compared to similar trophic enrichment that would see marine/brackish water fish contribute in 

the −10.1‰ to −4.6‰ range, as well as drive higher δ15N values.

Table S1. Isotopic and FRUITS modelling results for human bone samples from sixty individuals

from Varna 1 and Varna 3 cemeteries. Note 1: Human bone, initially sampled as animal bone. 

Subsequent zooarchaeology by mass spectrometry (ZooMs) confirmed that this is a human. Note 

2: Initially sampled as animal bone and no material was left for ZooMs. Based on the isotopic 

values and the confirmed misidentification in Graves 28 and 286, we consider this as human 



bone. Note 3: Human bone, initially sampled as animal bone. Subsequent ZooMs confirmed that 

this is a human. ‘Reference’ cites the original published source of the stable isotope analyses.
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